
From: Bassham, Lawrence E (Fed)
To: Moody, Dustin (Fed)
Subject: API doc
Date: Wednesday, August 9, 2017 11:12:24 AM
Attachments: API_080917.rtf

Dustin,

The version you sent me was older. I had the most recent (they have dates in the name now). Take a look at this. In
particular I changed the opening paragraph (deleted all the KAT stuff), tried to change the names on the KEM stuff
(is everything correct?), and changed/added stuff at the bottom for Additional Functions for randomness.

We need to put a document up that describes the randomness stuff. I’ll get working on that. Basically some
pseudocode like John did and something that shows/describes the sequence of calls (entropy from randombytes ->
CTR_DRBG -> SeedExpander). Do you think that should be added to the API doc directly?

Larry

mailto:lawrence.bassham@nist.gov
mailto:dustin.moody@nist.gov

PQC - API notes
Most of the API information is derived from the eBATS: ECRYPT Benchmarking of Asymmetric Systems (https://bench.cr.yp.to/ebats.html). This has been done to facilitate benchmarking algorithm performance. Please look at the eBATS page for more information on how to submit an algorithm for performance benchmarking.

Public-key Signatures
See https://bench.cr.yp.to/call-sign.html for more information on Public-key Signature API and performance testing.
The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 256
 #define CRYPTO_PUBLICKEYBYTES 85
 #define CRYPTO_BYTES 128
 #define CRYPTO_RANDOMBYTES 32
indicating that your software uses a 256-byte (2048-bit) secret key, an 85-byte (680-bit) public key, at most 128 bytes of overhead in a signed message compared to the original message, and 32 bytes of random input.
Then create a file called sign.c with the following function calls:
	eBATS calls
		Generates a keypair - pk is the public key and sk is the secret key.
 int crypto_sign_keypair(
 unsigned char *pk,
 unsigned char *sk
)
		Sign a message: sm is the signed message, m is the original message, and sk is the secret key.
 int crypto_sign(
 unsigned char *sm, unsigned long long *smlen,
 const unsigned char *m, unsigned long long mlen,
 const unsigned char *sk
)
		Verify a message signature: m is the original message, sm is the signed message, pk is the public key.
 int crypto_sign_open(
 const unsigned char *m, unsigned long long *mlen,
 const unsigned char *sm, unsigned long long smlen,
 const unsigned char *pk
)

Public-key Encryption
See https://bench.cr.yp.to/call-encrypt.html for more information on Public-key Encryption API and performance testing.
The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 256
 #define CRYPTO_PUBLICKEYBYTES 64
 #define CRYPTO_BYTES 48
 #define CRYPTO_RANDOMBYTES 32
indicating that your software uses a 256-byte (2048-bit) secret key, a 64-byte (512-bit) public key, at most 48 bytes of overhead in an encrypted message compared to the original message, and 32 bytes of random input.
Then create a file called encrypt.c with the following function calls:
	eBATS calls 		Generates a keypair - pk is the public key and sk is the secret key.
 int crypto_encrypt_keypair(
 unsigned char *pk,
 unsigned char *sk
)
		Encrypt a plaintext: c is the ciphertext, m is the plaintext, and pk is the public key.
 int crypto_encrypt(
 unsigned char *c, unsigned long long *clen,
 const unsigned char *m, unsigned long long mlen,
 const unsigned char *pk
)
		Decrypt a ciphertext: m is the plaintext, c is the ciphertext, and sk is the secret key.
 int crypto_encrypt_open(
 unsigned char *m, unsigned long long *mlen,
 const unsigned char *c, unsigned long long clen,
 const unsigned char *sk
)

Key Encapsulation Mechanism (KEM) 
The calls in the eBATS specification do not meet the calls specified in the call for algorithms. However, attempts were made to match the specifications for the other algorithms.
The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 192
 #define CRYPTO_PUBLICKEYBYTES 64
 #define CRYPTO_BYTES 64
 #define CRYPTO_CIPHERTEXTBYTES 128
 #define CRYPTO_RANDOMBYTES 32
indicating that your software uses a 192-byte (1536-bit) secret key, a 64-byte (512-bit) public key, a 64-byte (512-bit) shared secret, at most a 128-byte (1024-bit) ciphertext, and 32 bytes of random input.
Then create a file called kem.c with the following function calls:
	eBATS-like calls
		Generates a keypair - pk is the public key and sk is the secret key.
 int crypto_kem_keygenerate(
 unsigned char *pk,
 unsigned char *sk
)
		Encrypt - pk is the public key, ct is a key encapsulation message (ciphertext), ss is the shared secret.
 int crypto_kem_enc(
 unsigned char *ct,
 unsigned char *ss,
 const unsigned char *pk
)
		Decrypt - ct is a key encapsulation message (ciphertext), sk is the private key, ss is the shared secret
 int crypto_kem_dec(
 unsigned char *ss,
 const unsigned char *ct,
 const unsigned char *sk
)

Additional functions
A function, randombytes(), will be available to obtain random input. This function simulates an entropy source for testing purposes. The function prototype comes from the SUPERCOP package (https://bench.cr.yp.to/supercop.html). The type for the length argument is more than needed, but is left for consistency with the SUPERCOP package. The calling function shall allocate the storage for x and the xlen parameter specifies a number of bytes.

		 void randombytes(unsigned char *x, unsigned long long xlen)

A function, CTR_DRBG(), will be available to generate seed material. The calling function shall allocate the storage for seed and the xlen parameter specifies a number of bytes. The data from randombytes() is used as the entropy_input during the CTR_DRBG instantiation process (see http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf section 10.2.1.5.1).

		 void CTR_DRBG(unsigned char *seed, unsigned long long xlen)

A function, SeedExpander(), will be available to generate additional pseudorandom material. The calling function shall allocate the storage for x and the xlen parameter specifies a number of bytes. This function is used to generate data of arbitrary length with the additional feature that two calls for 8 bytes will produce the same data as a single call for 16 bytes.

		 void SeedExpander(unsigned char *x, unsigned long long xlen)

